Data Munging

This is a blog post about bla...

In [1]:
import pandas as pd
In [2]:
df = pd.read_csv('train.csv', nrows=100)
In [3]:
df.head()
Out[3]:
Id Feature_1 Feature_2 Feature_3 Feature_4 Feature_5 Feature_6 Feature_7 Feature_8 Feature_9 ... Ret_175 Ret_176 Ret_177 Ret_178 Ret_179 Ret_180 Ret_PlusOne Ret_PlusTwo Weight_Intraday Weight_Daily
0 1 NaN NaN NaN NaN 8 NaN 75751 0.2254 11 ... -0.002688 0.002246 -0.000838 -6.953224e-04 0.000003 -0.001974 -0.019512 0.028846 1251507.965681 1564384.957101
1 2 NaN NaN NaN NaN 3 0.388896 17369 0.0166 13 ... -0.000129 0.000123 0.000248 3.315418e-07 0.000003 0.000027 -0.002939 -0.010253 1733950.349065 2167437.936331
2 3 NaN -0.696727 0.739591 -0.167928 9 0.471947 8277 0.3650 9 ... -0.000524 -0.000394 0.000116 5.322557e-04 0.000274 0.000784 -0.024791 0.015711 1529197.383151 1911496.728938
3 4 NaN -0.694350 1.568248 0.479073 5 0.120653 22508 0.2654 13 ... 0.000346 -0.000090 0.000288 -1.281102e-04 0.000074 0.000341 -0.005680 -0.002190 1711569.423695 2139461.779618
4 5 6 -1.736489 2.765531 1.245280 7 4.866985 22423 0.2138 13 ... -0.001235 0.000027 0.002449 8.619882e-06 0.001209 -0.000004 0.036104 -0.026552 1267270.264754 1584087.830943

5 rows × 211 columns

In [5]:
%matplotlib inline
df.Feature_8.ix[:2000].plot.line()
Out[5]:
<matplotlib.axes._subplots.AxesSubplot at 0x10c5104e0>